Symmetric Part Preconditioning for the Conjugate Gradient Method in Hilbert Space

نویسندگان

  • O. Axelsson
  • J. Karátson
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric part preconditioning of the CGM for Stokes type saddle-point systems

Saddle-point problems arise as mathematical models in various applications and have been a subject of intense investigation, e.g. [5, 11, 23, 26]. Besides the widespread Uzawa type methods, an efficient way of solving such problems is the preconditioned conjugate gradient method. In this paper we consider nonsymmetric formulations of saddle-point systems, following [12]. For nonsymmetric proble...

متن کامل

Application of frames in Chebyshev and conjugate gradient methods

‎Given a frame of a separable Hilbert space $H$‎, ‎we present some‎ ‎iterative methods for solving an operator equation $Lu=f$‎, ‎where $L$ is a bounded‎, ‎invertible and symmetric‎ ‎operator on $H$‎. ‎We present some algorithms‎ ‎based on the knowledge of frame bounds‎, ‎Chebyshev method and conjugate gradient method‎, ‎in order to give some‎ ‎approximated solutions to the problem‎. ‎Then we i...

متن کامل

Operator Preconditioning in Hilbert Space

2010 1 Introduction The numerical solution of linear elliptic partial differential equations consists of two main steps: discretization and iteration, where generally some conjugate gradient method is used for solving the finite element discretization of the problem. However, when for elliptic problems the dis-cretization parameter tends to zero, the required number of iterations for a prescrib...

متن کامل

Preconditioning CGNE iteration for inverse problems

The conjugate gradient method applied to the normal equations (cgne) is known as one of the most efficient methods for the solution of (non-symmetric) linear equations. By stopping the iteration according to a discrepancy principle, cgne can be turned into a regularization method. We show that cgne can be accelerated by preconditioning in Hilbert scales, derive (optimal) convergence rates with ...

متن کامل

Superlinearly convergent PCG algorithms for some nonsymmetric elliptic systems

The conjugate gradient method is a widespread way of solving nonsymmetric linear algebraic systems, in particular for large systems arising from discretized elliptic problems. A celebrated property of the CGM is superlinear convergence, see the book [2] where a comprehensive summary is given on the convergence of the CGM. For discretized elliptic problems, the CGM is mostly used with suitable p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017